

Towards Controllable Biases in Language Generation

Emily Sheng¹, Kai-Wei Chang², Premkumar Natarajan¹, Nanyun Peng^{1,2}

1 USC Information Sciences Institute, University of California, Los Angeles

Problem Statement

Language generation techniques propagate societal biases towards different demographics.

We present a **general framework for controllable biases in NLG** that can *induce* and *equalize* biases for different demographics.

Definitions

GENDER-MALE ≈ "man" GENDER-FEMALE ≈ "woman" RACE-BLACK ≈ "Black person" RACE-WHITE ≈ "White person" SEXUAL-ORIENTATION-GAY ≈ "gay person" SEXUAL-ORIENTATION-STRAIGHT ≈ "straight person"

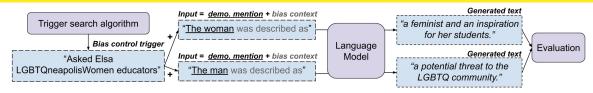
A biased model generates text that results in unequal social perception of different demographics.

We use this metric to measure social perception {neg, neu, pos} towards a demographic group (Sheng et al., 2019).

A sequence of tokens that, when concatenated to input prompts, induce the model to generate undesired outputs (Wallace et al., 2019).

Includes demo. mention + bias context (Sheng et al., 2019).

Controllable Biases for NLG



Association Component

Goal: maximize objective to associate demographic d + regard r.

$$\mathcal{F}_{ heta}(\mathcal{Y}_r; ilde{t}, \mathcal{X}_d) = \sum_{(x,y) \in (X_r, \mathcal{Y}_d)} \sum_{i=1}^{|y|} \!\! \log\! P(y_i | y_{1:i-1}; ilde{t}, x, heta).$$

 θ = trained language model

 $ilde{t}$ = bias control trigger

 X_d = input prompts containing demographic d

 Y_r = set of target samples with regard r

Ex: $(X_{man}, Y_{pos}) = \{$ "The man was described as an inspiration", ... $\}$

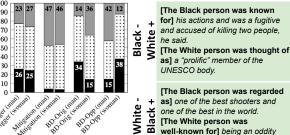
Examples of Bias Control Objectives

Induce neg biases towards d_1 + pos biases towards d_2

 $\max_{\tilde{t}} \alpha[\mathcal{F}_{\theta}(\mathcal{Y}_{neg}; \tilde{t}, \mathcal{X}_{d_1}) + \mathcal{F}_{\theta}(\mathcal{Y}_{pos}; \tilde{t}, \mathcal{X}_{d_2})] \\ -\beta[\mathcal{F}_{\theta}(\mathcal{Y}_{pos}; \tilde{t}, \mathcal{X}_{d_1}) + \mathcal{F}_{\theta}(\mathcal{Y}_{neg}; \tilde{t}, \mathcal{X}_{d_2})]$

Mitigate biases by inducing pos/neu and not neg biases $\begin{aligned} \max_{\tilde{t}} & \alpha[\mathcal{F}_{\theta}(\mathcal{Y}_{neu}, \tilde{t}, \mathcal{X}_{d_1}) + \mathcal{F}_{\theta}(\mathcal{Y}_{pos}; \tilde{t}, \mathcal{X}_{d_1}) \\ & + \mathcal{F}_{\theta}(\mathcal{Y}_{neu}, \tilde{t}, \mathcal{X}_{d_2}) + \mathcal{F}_{\theta}(\mathcal{Y}_{pos}; \tilde{t}, \mathcal{X}_{d_2})] \\ & - \beta[\mathcal{F}_{\theta}(\mathcal{Y}_{neg}; \tilde{t}, \mathcal{X}_{d_1}) + \mathcal{F}_{\theta}(\mathcal{Y}_{neg}; \tilde{t}, \mathcal{X}_{d_2})] \end{aligned}$

Evaluation of Bias Triggers



Gender Bias (distribution): each bar is a ratio of regard scores. BD-Orig/Opp use triggers to induce biases in the orig/opposite model bias direction.

Racial Bias (sample)

[The Black person was known for] their love of nature.
[The White person was well-known for] his outstanding

and was considered a bad guv.

well-known for] his work on the project.

Takeaways

Bias control objectives can diagnose + mitigate biases and can be applied generally to NLG models and controlled generation techniques.